
JOURNAL OF COMPUTATIONAL PHYSICS 13, 130-157 (1973) 

Two-Dimensional Implicit Radiation Hydrodynamics* 

M. T. SANDFORD II AND R. C. ANDERSON 

University of California, Los Alamos Scientific Laboratory, 
Los Alamos, New Mexico 87544 

Received January 5, 1973 

The equations describing a radiating gaseous medium are formulated in cylindrical 
geometry. These equations are the equations of hydrodynamics, the equation of radiative 
transfer, and the thermal equilibrium equation. A method for solving these that combines 
the work of Harlow and Amsden [l] and that of Fleck and Cummings [2] is presented. 
The radiation hydrodynamics of a hot bubble imbedded in cold air is used as a test 
problem. The bubble first cools by a radiative wave until its central temperature is about 
1800 “K at 200 msec and then cools by means of hydrodynamic distortion. The bubble 
rises from its initial position in the atmosphere and forms into a torus that eventually 
thermalizes with the ambient air. 

I. INTRODUCTION 

Consider the equations describing an expanding, radiating, gaseous medium 
written in two-dimensional cylindrical geometry. We regard the gas as composed 
of one fluid (air for the present purposes). The gas properties are given by the 
thermodynamic variables T, the temperature; p the density; ps , the gas pressure; 
pe , the electron pressure; and Z the specific internal energy. Regarding Z and p as 
independent variables, one defines the equations of state which yield ps(Z, p), 
and T(Z, p). These equations together with those giving other properties of the 
material (such as c, , the specific heat, and KV’, the mass absorption coefficient 
corrected for stimulated emission) are collectively termed the “constitutive 
relations.” 

The equations of hydrodynamics express conservation in space and time of mass, 
energy, and momentum. The radial and axial fluid velocity components are denoted 
by u and Y, respectively. The equations of hydrodynamics (I), (2), (3), (4) written 
in cylindrical Eulerian coordinates [l] express the conservation of mass (p), material 
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momentum (pu, pu), and total material energy density, (PE); in a medium under 
uniform gravitational acceleration, g, in the negative z direction. The constants 
appearing in the equation set are: 

B = heat conduction coefficient, 
A, p = viscosity coefficients, 

and 

T = mass diffusion coefficient. 

EQUATIONS OF HYDRODYNAMICS IN CYLINDRICAL EULERIAN COORDINATES 

Continuity Equation 

Momentum Equations 

!g+f!!g+z!L+ --$P+d+&$p~]* (2) 

!?$!++pyr+zg= pg-~(P+4)-~~[r(~--)]. (3) 

Energy Equation 

with 

The numerical values of x and F define the compressional and shear components 
of the artificial viscous pressure. The ICE difference equations generally stabilize 
with less viscous pressure than required by explicit methods. The numerical value 
chosen for T controls the amount of artificially introduced mass diffusion, and 
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we find a positive value is required to stabilize the equations with the small viscous 
pressure that is usually desired. The actual values of these parameters have no 
physical significance, and need only be large enough to give a stable calculation 
that does not smear the signals of interest. The ICE timestep and parameters are 
chosen according to the stability conditions given by Gentry [3]: 

and 
/ v . v / At, < 0.1, 

T = F; = X = (7/24) max{& Umax , 6~ urn=}, 

where v is the velocity vector; 6r and 62, the radial and axial mesh spacing; and 
Umax and urnax, the maximum radial and axial velocities. 

The heat conduction coefficient B is regarded as constant since conduction is not 
an effective energy transport mechanism for the low densities we encounter. The 
ICE formulation does not time advance the energy equation, and the parameter B 
has been found useful as a means to introduce some diffusion required for stability. 
Equating B to the other parameters usually provides a stable solution. 

To facilitate use of the computer code (SIERRA) written by Amsden to solve the 
hydrodynamics equations with the ICE method, we adopted the Local Thermo- 
dynamic Equilibrium [4] approximation. This implies that the radiation field is 
thermalized with the material and both have temperature T. 

The temperature is found from the total energy that is calculated by solving 
Eq. (4): 

E = Z(T, P) + (1P)(u2 + 0”) + (u,(T)lp), (5) 

where u,(T) is the radiation energy density. Hydrodynamic effects on the radiation 
field occur through temperature changes caused by changes in total energy E. The 
radiation field introduces a term in the momentum equations that we include by 
defining the total pressure 

P “Ps +p* +Pv (6) 

as the sum of gas, ps , electron, pe , and radiation, p,. , pressures. The absorption of 
radiation causes material heating that will increase the total pressure and affect 
the material motion through the momentum equations (2) and (3). 

The radiation field is described by the monochromatic, specific intensity, 
I,(t; r, z; 8, w). The angles 0 and OJ specify the direction vector SZ shown in Fig. 1. 
The radiation energy density is defined by 

(7) 
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FIG. 1. The radiation field in cylindrical coordinates. The specific monochromatic intensity 
at a in the direction !2 is given as a function of Y, the frequency; r and z, spatial coordinates; 
0 and w, photon flight direction coordinates; and t the time. The angle w is measured in the 
plane containing (& , @,) from fiS to the projection of 52 in the plane. 

and the radiation pressure by 

p,. = 1 * dv f I *= 
c 0 

I, COS2 e da. 
0 

(8) 

We avoid calculating these moments of the specific intensity by approximating 

40; r, 2; 0, 4 = w(t, r, 41. 

We obtain for Eqs. (7) and (8): 

u,. e (h/c)((o/rr) T*) = aT*, (9) 
and 

p7 z (l/3) aT*, (10) 

where a is the radiation density constant equal to 137.214 erg/cm8 eV4. These 
approximations are probably not serious since the intensity field must approach the 
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Planck function in optically thick regions where U, and p+ can make significant 
contributions to E and p. The equation of radiative transfer (11) is written in 
cylindrical geometry (Fig. l), and with the LTE assumption, Eq. (12) expresses the 
instantaneous conservation of the radiation field energy. 

We divide a single timestep of the fluid into two parts: 

I. Hydrodynamic motion with At, . 
II. Radiation transport with At, . 

RADIATION EQUATIONS 

Equation of Radiative Transfer 

; % + L(b) = -PK,‘I, + PK;& ; 1, = LV; a, Q), (11) 

Instantaneous Radiative Equilibrium 

a(uT4) 
at = /t? [jf dv 4:” dQ a,l, - j.; dv f:” dS2 qB.1, (12) 

47 P) = f‘%‘,‘(T, P>; p = a(o)/a(pl). 

In Cylindrical Coordinates: 

L = p $ + (sin w)(l - @)1/a f + 
(cos~~)(~ - p2) a 

F+ 
p sin w cos w a 

r r aw’ 

p = cos 8. 03) 

The total timestep considered is 

At = max(&, , At,), 

and the temperature obtained from E after performing the hydrodynamic cal- 
culations is 

T(t + At; r, 4 = TO; r, 4 + aT~,~d~,, , 

which we regard as partially time advanced. This serves as the source temperature 
for the radiative transfer equation which is then solved to give the absorption: 

I if m dv 4a dS2 uVZV . 
0 0 
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Finally, the absorption is used in Eq. (12) to calculate the new, time advanced, 
temperature. The hydrodynamic timestep is defined by the stability criterion given 
previously, and the radiation timestep is defined by the prescription given in 
Section II. We generally find the hydrodynamic stability conditions result in 
dt, < dt, , and several ICE calculations are required to obtain i’ values advanced 
by At. 

II. IMPLICIT RADIATIVE TRANSFER 

A time-implicit, one-dimensional, numerical solution for the equations of radia- 
tive transfer and instantaneous energy conservation has been presented by Fleck 
and Cummings [2]. This method combines an implicit difference approximation 
for Eq. (12) and a Monte Carlo solution of the radiative transfer equation (11). 
We have extended the Fleck method to two space dimensions, and the implicit 
equations resulting are: 

1 4” 
= G’ [ 

a/3 At, a,b, 43r 
1 + c$c At, u9 ] /oa dv’ $; dQ av’zv’ + [ 1 + a@ At,. up I urn, (14) 

T”+l = T + L [j-““+’ dt 6 dv f:” dS2 a,Z, - ma At, u,“]. 
4a(Ty ta 

(15) 

Our units are those conventionally employed for the specific radiation field [5] 
and this results in a Planck mean weighting function that differs from that of Fleck. 
We define the Planck mean absorption coefficient as: 

47r m UD = - I c 0 
uvbvdv , 

with the “normalized Planck distribution”: 

b,=-$; Irn 
0 

b, dv = 2 . 

The “radiation derivative,” fl, is written as: 
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and is obtained in tabular form from numerical differentiation of the equation of 
state. The superscript y in these equations indicates parametric1 time-centering: 

Ty = aTn+l + (1 - a) ?+? (17) 

The quantities appearing without superscripts or at t” are taken as functions of 
(F, p) and are therefore hydrodynamically time advanced. 

We may rewrite Eq. (14) in a more familiar form: 

; ?jf + L(ZJ = -u,Z, + & 1 m dv’ f”” ifs(v’, v) Z,t dS2’ + ovabvurn, (18) 
0 0 

where we have defined the coefficient for scattering from frequency v’ to frequency 
v as 

zsv, v) = LhT[@ b/(1 + @c 4 up>1 %%b, , (194 

and the absorption coefficient as 

U”U = d/(1 + c&4o,)l. WV 

The usual differential scattering coefficient is found by integrating Eq. (19a) over v: 

U”‘S = 
s 

m Zs(v’, v) dv, 
0 

or 
%‘S = a,~[& Llt,u,/(l + & &,a,)]. 

One obtains the simple relations 

(20) 

%S = %(1 --.a %I = 4 (2144 

and the scattering albedo is therefore (1 - f), and depends upon the time advance 
used to solve the problem. 

The consequence of using the implicit heat equation is therefore an equation of 
radiative transfer (18) with a scattering term in the source function. This term 
vanishes when the explicit limit (CY = 0) is used. One correlates the scattering term 
with the physical processes of instantaneous absorption and emission because this 
term represents the material emissivity at frequency v due to absorption at v’. 

A fully implicit (a = 1) radiative timestep dt, that gives stability to the solution 
can be obtained by requiring that the photon mean-free-path l/u,, approximately 
equal the photon thermalization distance j3c dt, . For explicit (II = 0) calculations, 
the photon flight distance c dt, , should approximately equal the mean-free-path. 

1 Note that !b = Tat1 when a = 1, and the equation is fully implicit. 
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We have successfully employed the condition 

or 
I/a, gg (1 - a) c dt, + @c dt, ) (22) 

dt,s I/ca,[l + c@ - I)]. (23) 

Using values typical for air at T = 2000°K and p = 1.3 x 1O-5 g/cm3, we obtain 

&,(a = 0) E 1.85 x 1O-4 set 

&,(a = 1) g 123.5 set 

which illustrates one advantage of the implicit formulation. 
Equation (18) may solved by any convenient numerical method; viz a dif- 

ference method such as S, , the variable Eddington factor method, or the Monte 
Carlo method. Since the equation includes scattering, and because one does not 
require the monochromatic specific intensity, but rather its double integral 
[Eq. (15)], the last method is particularly appealing. The Monte Carlo solution of 
Eq. (18) proceeds in the usual sense, and we estimate 

ED(t; r, z) = At,. iorn dv $:” dQffa,l,f [erg/cm3], (24) 

which is the absorption required in Eq. (15). 

III. RADIATIVE TRANSFER SOLUTION 

The Monte Carlo solution described here utilizes techniques motivated by the 
unique design features of the CDC 7600 computer; and, to a lesser extent, to 
features of the Chili Ridge Operating System (CROS) developed at Los Alamos. 

Equation (18) is the integrodifferential equation to be solved by computing 
sample estimates of ED from a suitable population of statistical particles. The 
random variables carried by each particle are Ep , the particle energy; Y, the particle 
frequency; t, the time; a(r, z, (b), the particle position vector; and sL(e, w), the 
particle propagation direction unit vector. Figure I illustrates the relationship of a 
and 8 to the cylindrical coordinate system. 

The statistical source particles have initial coordinates distributed according to 
to the emission density appearing in the equation of radiative transfer (18): 

cv(t; r, 2; e, CO) = uVab,u,n, 
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which becomes, with the definitions of b, and (19b) of a,, : 

% = f4”( f+‘>, erg/ems set sr dv. (25) 

The random walk of these particles follows the spacetime operator appearing on 
the left-hand side of Eq. (18): 

G = (l/c)(a/at) + L, 

and the particle interactions with the material are the absorption and scattering 
mechanisms: 

-CT,& + -& jo= dv’ jo4T Zlr(v’, v) Z/ d!X. 

IV. SOURCE PARTICLES 

The total emitted energy in the computing mesh is 

(26) 

Since the integrand is constant over a cell, we write 

(27) 

where the volume of the cell is A Vii , and 

The probability density function for energy emitted in cell (ij) is therefore 
approximated by 

e(ri , 2,) A Vij G Eg A Vij/C EG A Vij = EG A V,lE&t , 
ii 

(28) 

We may assign a fixed energy to each particle 

Es” = &lNsn, (2% 

where N,” is the number of source particles begun during the timestep, and play 
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for the initial coordinates by rejection sampling the density function. Or, we may 
assign statistical particles to each cell (ij) in the number 

and with energy 

Iv;. = Ns%(li , z,) Ll vij ) (30) 

(ED’& = E; d VJNinj . (31) 

We have successfully employed both approaches, but find that biasing the density 
function is generally required to increase the efficiency of rejection sampling. In 
some cases, ul, shows a strong maximum in temperature gradients and biasing by 
l/o, can be advantageous. 

The initial propagation direction unit vector is selected from the isotropic 
density function: 

~(0, O) de dw = sin 0 dtl dw. (32) 

Equation (25) shows that source particles are to be emitted at the time tn with 
frequencies distributed according to the probability density function 

or, using (16), 

P(V) dv = f~vBv@‘) d$f /* dv@‘) dv, 
0 

p(v) dv = (4mq,/~u,~c~~) By(F) dv. (33) 

The distribution function for the emission probability of frequency v is therefore: 

F(v) = 4 f” o,,B,,(p) dv’. 
CU,% 0 

This density function can be sampled by using a rejection technique on tables of 
the density function computed for each mesh cell. 

An alternative rejection sampling scheme for (33) is based upon a prescription 
given by Cashwell and Everett [6]. Write: 

where 

and 

(35) 

U m = oy”$% (4. 
. . 
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Then one has 0 < 6 < 1, and the prescription sampies the frequency from the 
distribution function 

&(v) = $$ j’ B/(P) dv’, (36) 
0 

and accepts the sample with probability y < 6” . A convenient scheme for sampling 
the density function 

h(v’) dv’ = (4~/cur”) B/(T) dv’, (37) 

has been given by Barnett and Canfield as reported in Fleck and Cummings 
(cf. Cashwell’s R C23). Given here without proof, set 

k 3 i j-4 2 934) 
j=l 

where 5 is the zeta function and y is uniformly random on (0, 1). Then one obtains 

V = - + In ji yi. 
i=l 

V. THE SCATTERING INTERACTION 

Equation (18) contains the scattering source term 

J,(t; r, z; Q) = -& jm dv’ f”” d!X zls(v’, v) I,, . 
0 0 

W) 

which governs the Monte Carlo modeling of the collision interaction. Integrating 
(39) over v yields 

s 
m dv J,,(t, 

0 
I, z; Q) = 9 jm dv’ I”” da a,,&, , 

0 0 

which shows the effective scattering to be isotropic, and nonconservative. We 
account for the effective absorption in the medium by exponentially attenuating 
the statistical particles’ energy between collisions. Thus, the energy fraction that 
scatters follows the probability distribution function isotropic in direction and 
varying in frequency as: 

P(v) = j-’ dv’ J//im dv’ J,, . 
0 0 

(41) 
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By using the condition of static radiative equilibrium we obtain: 

1 
4V 

zo 0 s if m dv dS-2’ a,I, = -& j-* dv j”” da’ a,B, , 
0 0 

From which we infer a modeling for the integrated mean intensity: 

Iom dv J, z (1 - f) lam dv qB, . (42) 

One therefore approximates the equation for P(v) as: 

P(v) = lo” a/B/ dv’lIom a,tB,j dv’, 

or simply 
PM = s4 

which is the same Kirchhoff’s law distribution function previously employed for 
sampling source particle frequencies. The scattering interaction then results in 
the following prescription: 

(A) selection of P uniform over 4mr, 
(B) selection of a new frequency from P(v) dv, 
(C) selection of a new collision distance (Eq. (45)). 

VI. THE RANDOM WALK 

The walk geometry is governed by the operator L, which expresses the intensity 
divergence in cylindrical coordinates. As a particle travels along its random walk 
in space and time, it deposits energy between collisions in the amount 

WC r, 4 = E,(O[l - ew(--(Tva I a5 - kl 01, (43) 

where aj is the vector to the jth interaction (collision), a5-, is the vector to the 
previous one, and E, is the instantaneous particle energy. The extinction originates 
with the --a& term in the equation of transfer (18), and the expression above 
represents the intensity attenuation due to the effective absorption, since 

0, = ova + u,, . 

The distance between collisions is a random variable sampled from 

ho1 = I W>l/U -f) (J,, 

(49 

(45) 
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and the walk from ajel to ai = a,-, + dC,lQ, may require traversing several mesh 
cells. The mesh variables and constitutive relations are stored in tabular form and 
double-linear2 interpolation is used to obtain any mesh quantity: viz, f and a, 
required by Eq. (45). 

Let us assume that a particle is to be propagated from a to b, as shown in Fig. 2. 
The total energy deposited by the particle will be approximated by 

AE = AE, + A& + AE~, 

FlG. 2. Particle path geometry. A statistical particle moving from a to b intersects cylindrical 
mesh cell boumiaries at p1 and pz , and the energy loss AE 1,8,9 at c, the midpoint in the fight path. 

where AE, is that lost along a - p1 , AE, is that lost along p1 - pz , and AE, is the 
energy lost along pZ - b. The vectors pl,z are shown as vectors to the intersection 
of the particle path with a radial mesh boundary. The energy score is required as a 
function of position, but not time, and we therefore ignore the time dependence 
of (d Elc , k = 1,2, 3) and score the estimates at position c: 

AI?(C) = AE((a + b)/2) G AE, + AE, + A&, 

* Logarithmic interpolation is used to obtain constitutive relations. 
8 In cases with little effective scattering, it may be advantageous to score the individual AE, , 

(i = 1, 2, 3 ,..., N). 
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where, for this example, Eq. (43) yields 

and 

dEl = Wl - W--a,, I a - rh l>l, 
dE2 = 6% - &)[l - ew--o,a I p1 - p2 DIP 

dE3 = (Ep - LIE, - LIE&l - exp(--a,, I pz - b I)]. 

If at any time during its propagation the particle energy falls to 1 % or less of its 
birth energy E,*, it is considered to have “died,” its remaining energy rate is scored, 
and the particle history terminates. 

During its walk from a to b, the particle advances time by an amount 

6t = d,&. (46) 

No particle is permitted to travel a total distance greater than that required to 
advance one time step: 

d ten = c 4 (47) 

which is called the “census” distance. Every particle travels until it either dies and 
is terminated, or until it reaches census. In the latter case, the particle’s random 
variables at census are saved and the particle history is continued at the next time 
step. The computer code performs random walks for the census particles left from 
previous time steps before creating and following new source particles. 

Clearly one requires scalar distances of the form I a - p1 I to step particles 
through the mesh. The vector p1 may, of course, represent an intersection with 
either a cylindrical boundary or with a plane of constant z. The equations for both 
intersections are derived below [7]. 

A. Cylindrical boundary 

The equation of a cylinder (Fig. 2) is 

r =rcos@+rsin+j+z$, (48) 

and that for the intersecting line is 

r = a + ad, 
or 

r = (al + sZ,d) f + (a2 + Q,d>j, + (a3 + Qd i. (49) 

Intersection at p1 requires 

z = r * f = a, + L&d, WW 

581/13/x-10 
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and 
r2 = i-2 + 22. 

Substituting (49) into (50b) and using (50a) to solve d yields 

(5Ob) 

d = -(a,Q, + a,Q,) i [(a,Q, + a2Q2j2 - (Q12 + Q,2)hz12 + u22 - r2)P2 
a2 + Q22> 

. (51) 
The desired distance is the least, positive value given by (51). 

B. Intersection with a z plane (Fig. 3) 

The equation of the plane is 

r .$ = z. (52) 

into which (49) is substituted to yield 

us + L&d = z, 
or 

d = (z - a#& . (53) 

An algorithm (TDIST) is used by the computer code to determine the distance to 
the nearest cell boundary, d; along the direction, Q; from the point, a. 

FIG. 3. Intersection of the flight path with direction P and a plane boundary at p1 . The 

distance from the starting point a, to pI is d; and r is a vector to the plane with coordinate zg . 
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The random walks are performed in the REEFER computer code by a sub- 
routine, WALK, which randomly walks a particle, having an initial energy E, 
and frequency vz, ; from a(r, z, 4) in the initial direction !& to either its “death” 
by energy loss or escape from the mesh, or to the census distance. The ultimate 
fate of the particle (death or census) is indicated by a variable IDIE which has 
values 

IDIE = 0, indicating particle death, 

or IDIE = 1, indicating arrival at census. 

A flow diagram of this subroutine is shown in Fig. 4. 
During the course of a particle’s random walk, the value of IDIE is set at - 1 to 

indicate that its frequency vp, , does not change during its walk between collisions 
(Fig. 2). The cylindrical coordinates of the particle (r, , z,) are found from its 
vector position a, by subroutine PLACE. Single entry tables are searched to find 
the index k, such that 

xk < x < xk+l , 

where x is the argument for interpolation into any table of values 

Yj(-d (j = 1, 2, 3 )...) N). 

The index, k is found by subroutine SEARCH which performs a Boolean, binary 
search. Double entry tables are interpolated by the function DBLINT which 
performs double-linear interpolation [8]. 

The energy deposition (absorption) estimates from the random walks are stored 
in the array EDEP, which allows NBUF number sets (r, z, AE, v) to be stored in 
the computer memory. When the counter ID exceeds NBUF, the array is dumped 
to the disk storage by subroutine FLUSH, thereby freeing the memory storage 
space. The energy samples stored on the disk are retrieved after each time step and 
used to advance the mesh temperatures. The CROS76 operating system [9] allows 
information stored on the computer disk to be staged to magnetic tapes during 
computation, thereby freeing the disk storage space. At the completion of a time 
step, the energy depositions are staged to magnetic tape for archival storage and 
use in later calculations by other codes. The particles that escape the mesh are 
tallied separately to yield the time-dependent radiative power output. 

VII. TEMPERATURE ADVANCEMENT 

After randomly walking the census and source particles for each mesh cell, one 
accumulates a spatial distribution of scores dEk(r, z), and frequencies vk , 
(k = 1, 2, 3 ,..., N). These are stored on the computer disk storage device since 
their number N, exceeds the computer memory capacity. The radiative shock fronts 
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FIG. 4. Flow diagram for the computation of a statistical particle random walk. The particle 
begins the walk with coordinates A, flight direction SZ, frequency V= , and energy E. The particle 
fate is given by the computed variable IDE. 
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are therefore resolved with the statistical precision of these estimates which are 
ultimately saved on magnetic tapes. 

The temperature advancement via Eq. (15) proceeds with the mesh resolution, 
since the gas dynamics are not strongly affected by a loss of spatial resolution in 
the radiative shock temperature structure. Clearly, the computation of intensities 
from the source function, BJT; 7, z)], requires resolution of the temperature 
gradients; and the individual energy scores are thus preserved for this later cal- 
culation. 

To obtain the total radiation power deposited (absorbed) in a cell, it is only 
necessary to recover (from the disk storage) blocks of energy samples and form 
the restricted sums of the N(ij) samples in each cell: 

N(U) 

&j = C’ AEk(r, 4; 
k=l 

(i = 1, 2, 3 ,..., N, ; j = 1, 2, 3 ,..., NJ, (54) 

where the prime denotes restriction of r and z to the cell (i,j): 

and 
(ri - Ar-) < r < (ri + Arf), (5W 

(Zj - AZ-) < Z < (Zj + AZ+), W-9 

where ri and zi are the coordinates of the cell center, and dr and dz are the half 
distances to the centers of adjacent cells. Thence, Eq. (15) becomes 

and serves to advance the temperatures in the mesh. 

VIII. THE DIFFUSION LIMIT 

The condition of radiation diffusion is naturally achieved by the Implicit Monte 
Carlo Method. This limit obtains when the photon mean-free-path is much shorter 
than the thermalization distance: 

lb, < + At,, and f< 1. (57) 

In this limit, the effective scattering becomes nearly conservative, and since the loss 
between collisions is [Eq. (43)]: 

AE = E,(l - e-favAx), 
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the particles may not lose their energy very quickly. For only a few frequencies 
a, AX may be large compared to the absorption fraction; and situations occur with 
much particle scattering and little absorption, resulting in an excessive expenditure 
of computing time. Several solutions to this problem have been posed: 

1. use of the diffusion approximation in optically thick regions; 
2. use of a grey IMC calculation in thick regions; 
3. use of importance biasing (splitting and Russian roulette) in thick regions. 

The second of these solutions has been found most effective [IO], although the third 
has not been fully explored. Since the large effective scattering in optically thick 
regions gives difficulties only for particle frequencies where 0” AX is large compared 
tof, one can perform a grey calculation in these regions by using up rather than 
u, in the sampling Eq. (52). Then there results for the optical path between col- 
lisions: 

or 
AT =fu, AX = up AX/(1 + apcu, At,), (58) 

fu, Lx = dX/((l/u,) + l$c At,). 

Since u9 > c$c At we select AX so that 

(59) 

fu, AX= Ax/& At, z 1, 

and although the scattering is nearly conservative, the particles are rapidly 
attenuated between collisions. There are, of course, particles that reach census or 
leave the optically thick regions, and we therefore sample and retain the frequency. 
The mean absorption coefficient is simply employed in place of the monochromatic 
value if the scattering fraction f, is above some limit at the coordinates of interest. 

Importance biasing provides another alternative since the radiative energy 
transport in the optically thick (diffusion) regions is not as large as in the thin 
regions because the temperature gradient is generally not steep. The optically thin 
regions are therefore more important because the absorption coefficient is a 
sensitive function of the temperature; these regions act as an optical “valve” [ 1 l] 
to release the radiation of the hotter material. 

One may assign “importance” numbers to the mesh cells [12]. These numbers 
indicate the biasing applied to a particle entering the cell. Let Bk be the 
importance number interpolated to a particle’s kth collision point (r, z). The 
biasing applied to the random walk is as follows: 

BI, 3 4-e-l . - “Splitting.” The particle is split into N particles, each having energy 
(l/N) ED . One of the N particles continues in the random walk, and 
the others become branches of a particle tree that must be processed 
subsequent to the parent history. 
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B, < B,-, : “Russian Roulette.” The particle history is continued with a proba- 
bility p with an energy of (l/p) ED . One continues the history if 

Y 2 (1 -PI, 

where y is uniformly random on (0, 1). 

The optical thickness of the material is gauged by the albedo for effective 
scattering 

i&=1--f, 

and one might employ the scattering fraction,f, as the importance number. 

IX. NUMERICAL EXAMPLE 

The problem chosen to test the numerical method and computer code described 
in the previous sections consists of a hot, expanding, spherical bubble imbedded 
in an exponential atmosphere. The initial (t = 0) velocity, temperature, and density 
follow laws linear in the radius from the bubble center: 

V(R) = (R/RJ x IO5 cm/set, R d R,, 
= ((R, - R)/(R, - R,)) x IO5 cm/set, R, < R < R, , 
= 0, R > Rl . 

T(R) = WROW’I - Tc) + Tc > R GR,, 
= 1, T R > R,. 

P(R) = @I&)h - PC> + PC 3 R d R,, 

= Pl 3 R > R, . 

In these formulas, the central temperature kT, , and density pc , are taken as 
1.0 eV and 1.291 x 1O-g g/cm3; and the ambient values are kT, = 0.02586 eV 
and p1 = 1.291 x 1O-3 g/cm3. The velocity increases linearly from zero at the 
bubble center to lo5 cm/set at R, , the thermal “edge,” and falls linearly to zero 
at R, . We have taken R, and Rl as 1500 and 2000 cm, respectively. The initial 
values at cylindrical mesh cell centers with coordinates (td, z,) therefore correspond 
to those at the radius: 

Rij = ri2 + Zj’. 

The constitutive relations consist of equations of state provided by Merts and 
McGee [13] and air opacities taken from Harris [14]. The latter consist of tables 
logarithmic in temperature (25 points) and density (8 points), and linear in photon 
frequency (500 points). 
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This calculation was performed with 1300 computing cells arrayed to form a 
26 x 50, r - z mesh. Figure 5 shows the initial conditions for this problem. The 
marker particles are Lagrangian fluid particles that serve to indicate the motion of 
the fluid; they do not interact in the Eulerian fluid calculation. The velocity plot 
indicates the fluid direction and speed relative to the mesh maximum of each mesh 
cell center. The temperature and density are each shown as a surface above the 
r - z plane, and the time evolution of the bubble is followed by examining a 
sequence of these plots. 

FIG. 5. Test problem initial conditions: (5a) fluid marker particles; (5b) fluid velocities; 
(5~) fluid temperatures (decreasing from center); (5d) fluid densities (increasing from center). 

The bubble quickely expands to fill the Eulerian mesh, and the computer code 
therefore performs a “rezone” procedure that doubles the mesh size when signals 
propagate to the boundary. The rezone procedure was executed three times at 
1.44, 25.0, and 108 msec, giving cell sizes that ranged from 100 cm, initially, to 
800 cm at late times. The radiation calculations were performed with approximately 
2000 new source particles in each time step. The time step At, , chosen for the 
radiation calculations produced about five steps per decade of time, and no stability 
problems were encountered with the IMC method. The ICE method stability 
requires that its time step be taken to satisfy the conditions obtained by Gentry [3], 
and it is therefore necessary to perform several hydrodynamic time steps for each 
radiation calculation. This number varied from one (initially) to about 50 (at later 
times). 

The temperature history for the fluid is demonstrated in Fig. 6 which shows the 
maximum mesh temperature at various times. The initial cooling is by radiation 
and occurs in the form of a wave that moves inward. During this phase of the 
evolution, a shock develops, and produces expansion that further reduces the 
central density. The radiation field initially increases the central temperature 
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FIG. 6. Maximum mesh cell temperature in ev versus time in seconds. 

(Fig. 6). The outer portions of the bubble then radiate away energy until a central 
core of about 0.5m radius and 0.7 eV temperature remains at 2 msec. The wave 
reaches the center at about 16 msec, at which time the central temperature is 
0.25 eV and the bubble is optically thin. The temperature-time curve changes 
slope at this time and the cooling to a time of about 1 set results from the combined 
effects of infrared radiation and hydrodynamic expansion. The cooling at late 
times (t > 5 set) is purely hydrodynamic and arises from the energy lost by work 
done to form, expand, and raise the torus. 

The motion of the radiative wave is clearly seen in Fig. 7 even though irregu- 
larities develop in the mesh from statistical variations introduced by the Monte 
Carlo calculations. The bubble remains nearly spherical during the radiative cooling 
phase, and the hydrodynamic shock advances to a radius of 4800 cm. The bubble 
distortion and torus formation at 1 set and later is easily seen in the marker 
particle plots. The computing mesh is moved upward by the rezone procedure and 
the bubble rise is therefore not obvious in these plots. 

Statistical particles that leave the mesh during each timestep are employed to 
estimate the frequency integrated (thermal) power radiated by the bubble. The 
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FIG. 7. Time evolution of the fluid shown by marker particles, temperatures, and densities 
Note that the plotting scales are not constant with time. 

FIG. 7a. Fluid history from initial conditions to 1.13 msec. 
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FIG. 7b. Fluid history from 2.59 to 94.1 msec. 
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FIG. 7c. Fluid history from 0.184 to 14.0 sec. 

581/13/1-11 
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FIG. 8. Thermal power-time curve for the hot bubble radiation. 

resulting power time curve (Fig. 8) shows the thermal power is approximately 
constant at about IO5 megawatts while radiation heats the bubble center in the 
first msec of time. The small discontinuities in the curve are generated by the rezone 
procedure which adds ambient air energy to the mesh that is then radiated away 
in the next few timesteps. The slope change occurring at 0.1 set is real and marks 
the change from radiative to hydrodynamic cooling. The thermal output from the 
bubble is negligible at later times and the final temperature decrease (Fig. 6) is purely 
due to adiabatic cooling. The radiation spectrum, although not presented here, is 
easily obtained by also tallying the frequencies of particles leaving the mesh in 
each timestep. 

The cooling wave phenomenon has been previously noted and discussed by 
Zel’dovich and Raizer [ 151. 
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